596 research outputs found

    Temporal archetypal analysis for action segmentation

    Get PDF
    Unsupervised learning of invariant representations that efficiently describe high-dimensional time series has several applications in dynamic visual data analysis. Clearly, the problem becomes more challenging when dealing with multiple time series arising from different modalities. A prominent example of this multimodal setting is the human motion which can be represented by multimodal time series of pixel intensities, depth maps, and motion capture data. Here, we study, for the first time, the problem of unsupervised learning of temporally and modality invariant informative representations, referred to as archetypes, from multiple time series originating from different modalities. To this end a novel method, coined as temporal archetypal analysis, is proposed. The performance of the proposed method is assessed by conducting experiments in unsupervised action segmentation. Experimental results on three different real world datasets using single modal and multimodal visual representations indicate the robustness and effectiveness of the proposed methods, outperforming compared state-of-the-art methods by a large, in most of the cases, margin

    Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    Get PDF
    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage

    The potential of mixed-method social network analysis for studying interaction between agency and structure in education

    Get PDF
    This article discusses the potential of mixed-method social network analysis (MMSNA) as a methodology for designing and conducting studies that address questions of interplay between human agency and social structures in educational settings. First, we discuss a rationale for using MMSNA referring to the theoretical calls for better understanding the role of agency in network structures. Next, we discuss examples of studies that illustrate how MMSNA has been applied to investigate (a) the role of agency in social network formation and (b) how social networks facilitate actors' agency in educational processes. Finally, we outline a guide for how to use MMSNA and consider its potential for future studies of interactions between agency and structures in educational settings

    Speech-driven facial animations improve speech-in-noise comprehension of humans

    Get PDF
    Understanding speech becomes a demanding task when the environment is noisy. Comprehension of speech in noise can be substantially improved by looking at the speaker’s face, and this audiovisual benefit is even more pronounced in people with hearing impairment. Recent advances in AI have allowed to synthesize photorealistic talking faces from a speech recording and a still image of a person’s face in an end-to-end manner. However, it has remained unknown whether such facial animations improve speech-in-noise comprehension. Here we consider facial animations produced by a recently introduced generative adversarial network (GAN), and show that humans cannot distinguish between the synthesized and the natural videos. Importantly, we then show that the end-to-end synthesized videos significantly aid humans in understanding speech in noise, although the natural facial motions yield a yet higher audiovisual benefit. We further find that an audiovisual speech recognizer (AVSR) benefits from the synthesized facial animations as well. Our results suggest that synthesizing facial motions from speech can be used to aid speech comprehension in difficult listening environments

    Absolute Calibration of the DANCE Thermal Neutron Beam using Sodium Activation

    Get PDF
    The measurement of the neutron capture cross-section as a function of energy in the thermal range requires a precise knowledge of the absolute neutron flux. In this paper a new method of calibrating a thermal neutron beam using the controlled activation of sodium is described. The method is applied to the FP-14 Time Of Flight neutron beam line at the Los Alamos Neutron Science Center to calibrate the beam to a precision of ±5\pm5%.Comment: 12 pages, 3 figures, v2 is the version accepted for publication in NIM

    Fusing face and body display for Bi-modal emotion recognition: Single frame analysis and multi-frame post integration

    Full text link
    This paper presents an approach to automatic visual emotion recognition from two modalities: expressive face and body gesture. Pace and body movements are captured simultaneously using two separate cameras. For each face and body image sequence single "expressive" frames are selected manually for analysis and recognition of emotions. Firstly, individual classifiers are trained from individual modalities for mono-modal emotion recognition. Secondly, we fuse facial expression and affective body gesture information at the feature and at the decision-level. In the experiments performed, the emotion classification using the two modalities achieved a better recognition accuracy outperforming the classification using the individual facial modality. We further extend the affect analysis into a whole image sequence by a multi-frame post integration approach over the single frame recognition results. In our experiments, the post integration based on the fusion of face and body has shown to be more accurate than the post integration based on the facial modality only. © Springer-Verlag Berlin Heidelberg 2005

    Genetic modifiers of Duchenne muscular dystrophy and dilated cardiomyopathy

    Get PDF
    OBJECTIVE: Dilated cardiomyopathy (DCM) is a major complication and leading cause of death in Duchenne muscular dystrophy (DMD). DCM onset is variable, suggesting modifier effects of genetic or environmental factors. We aimed to determine if polymorphisms previously associated with age at loss of independent ambulation (LoA) in DMD (rs28357094 in the SPP1 promoter, rs10880 and the VTTT/IAAM haplotype in LTBP4) also modify DCM onset. METHODS: A multicentric cohort of 178 DMD patients was genotyped by TaqMan assays. We performed a time-to-event analysis of DCM onset, with age as time variable, and finding of left ventricular ejection fraction 70 mL/m2 as event (confirmed by a previous normal exam < 12 months prior); DCM-free patients were censored at the age of last echocardiographic follow-up. RESULTS: Patients were followed up to an average age of 15.9 \ub1 6.7 years. Seventy-one/178 patients developed DCM, and median age at onset was 20.0 years. Glucocorticoid corticosteroid treatment (n = 88 untreated; n = 75 treated; n = 15 unknown) did not have a significant independent effect on DCM onset. Cardiological medications were not administered before DCM onset in this population. We observed trends towards a protective effect of the dominant G allele at SPP1 rs28357094 and recessive T allele at LTBP4 rs10880, which was statistically significant in steroid-treated patients for LTBP4 rs10880 (< 50% T/T patients developing DCM during follow-up [n = 13]; median DCM onset 17.6 years for C/C-C/T, log-rank p = 0.027). CONCLUSIONS: We report a putative protective effect of DMD genetic modifiers on the development of cardiac complications, that might aid in risk stratification if confirmed in independent cohorts

    Characterization of the QUartz Photon Intensifying Detector (QUPID) for Noble Liquid Detectors

    Full text link
    Dark Matter and Double Beta Decay experiments require extremely low radioactivity within the detector materials. For this purpose, the University of California, Los Angeles and Hamamatsu Photonics have developed the QUartz Photon Intensifying Detector (QUPID), an ultra-low background photodetector based on the Hybrid Avalanche Photo Diode (HAPD) and entirely made of ultraclean synthetic fused silica. In this work we present the basic concept of the QUPID and the testing measurements on QUPIDs from the first production line. Screening of radioactivity at the Gator facility in the Laboratori Nazionali del Gran Sasso has shown that the QUPIDs safely fulfill the low radioactive contamination requirements for the next generation zero background experiments set by Monte Carlo simulations. The quantum efficiency of the QUPID at room temperature is > 30% at the xenon scintillation wavelength. At low temperatures, the QUPID shows a leakage current less than 1 nA and a global gain of 10^5. In these conditions, the photocathode and the anode show > 95% linearity up to 1 uA for the cathode and 3 mA for the anode. The photocathode and collection efficiency are uniform to 80% over the entire surface. In parallel with single photon counting capabilities, the QUPIDs have a good timing response: 1.8 +/- 0.1 ns rise time, 2.5 +/- 0.2 ns fall time, 4.20 +/- 0.05 ns pulse width, and 160 +/- 30 ps transit time spread. The QUPIDs have also been tested in a liquid xenon environment, and scintillation light from 57Co and 210Po radioactive sources were observed.Comment: 15 pages, 22 figure

    First Dark Matter Results from the XENON100 Experiment

    Full text link
    The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62 kg of liquid xenon in an ultra-low background dual-phase time projection chamber. In this letter, we present first dark matter results from the analysis of 11.17 live days of non-blind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the pre-defined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross-sections above 3.4 x 10^-44 cm^2 for 55 GeV/c^2 WIMPs at 90% confidence level. Below 20 GeV/c^2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.Comment: 5 pages, 5 figures. Matches published versio

    Solar neutrino detection in a large volume double-phase liquid argon experiment

    Full text link
    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the "neutrino floor" (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.Comment: 21 pages, 7 figures, 6 table
    • 

    corecore